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Some noteworthy spin plethysms 

R C King and B G Wybournet 
Mathematics Department, The University, Southampton, SO9 SNH, UK 

Received 25 September 1981 

Abstract. The spin plethysms AGOA that arise in the reduction of A under SO(N)+G 
when [ ~ ] + A G  are considered. It is shown that, for the sim le Lie algebras of rank k, if 
Ao = q ~ ,  the adjoint representation of G, then q ~ 8 A  = 2'k/zpbG where 8, is the represen- 
tation of G whose highest weight is half the sum of the positive roots. Certain results for 
other representations are described. A remarkable series of 9-functions is introduced 
leading to a new dimensional equality between certain representations of O(2k) and Sp(2k). 

The adjoint representation (PG of each simple Lie group G is orthogonal and uni- 
modular (Malkev 1962). It follows that G may be embedded in SO(N) where N is the 
dimension of (PG. This embedding, signified by 

SO(N) =) G [I] + (PG, (1) 

SO(N) 3 G A+po@A (2) 

is such that the branching rule for any representation A of SO(N) takes the form 

where (PG @ A  denotes a plethysm (Littlewood 1950) whose total dimension is equal to 
that of A. In particular, the branching of the spin representation A of SO(N), of 
dimension 2[N'21, is given by 

SO(N) 3 G A + ( P G @ A .  (3) 
The evaluation of the spin plethysm ( P ~ @ A  may be accomplished by considering 

the mapping from the weights of the representation [l] of SO(N) to the weights of the 
representation (PG of G. These latter weights are simply the roots fr(a) of the 
corresponding Lie algebra g of dimension N, together with k null vectors 0, where k is 
the rank of g. The number of positive roots r ( a )  of g is (N-k)/2. 

The order-preserving map corresponding to (1) then takes the form 

r (a )  for i = a  = 1,2, ,  . . , (N-k)/2 
0 fori=(N-k)/2+1,(N-k)/2+2,  . . . ,(  N + k ) / 2 - 1  (4) 

-r(a)  for i =N-a  + 1 = (N+k)/2,  (N-t-k)/2+ 1, .  . . , N -1, N, 

fori  = 1,2, .  . . , [N/2] 
for i = [N/2] + 1 if N is odd 

where, in the [N/2]-dimensional weight space of SO(N),  

-eN++1 fori=N-[N/2]+1, ..., N - l , N  

with ei = (00. . . 1 . . . 0) where the ith component is 1 and all others vanish. 

t Permanent address: Physics Department, University of Canterbury, Christchurch, New Zealand. 
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The weights of the spin representations A of SO(N) are the 2‘”’ vectors 

i = l  

with vi = *$. 
The mapping of the highest weight then takes the form 

where 6 is half the sum of the positive roots of g. This weight is the highest weight of an 
irreducible representation SG of G which is thus necessarily a constituent of the 
restriction to G of A. 

More generally this weight vector S is produced under the mapping (4) from the 
weights (6) of A in precisely 2rk/2’ ways, since the last [ k / 2 ]  coefficients v i  may be 
changed from +$ to --$without altering the image of w under (4). It follows that 

QG @ A  2 2[k/21SG. 

The dimension of the irreducible representation AG is given by Weyl’s character 
formula 

where A is the highest weight of AG. Hence 
d(SG)  = 2”-k’/*. 

However 

d ( A )  = 2‘”’’. 

(9) 

Since N = k(mod 2) for each simple Lie algebra, a dimensional check is sufficient to 
confirm the following general result: 

SO(N) 3 G [I] -* 406 A -* QG @ A  = 2[k’218G. (11) 

Of course, if N is even, the spin representation A has two irreducible constituents 

(12) 
The representation 86 of G, whose highest weight is half the sum of the positive 

roots, is specified in the Dynkin notation by attaching a 1 to each circle of the Dynkin 
diagram. This follows from the fact that 6 is the sum of the highest weights of the k 
elementary representations of G (Dynkin 1957, p 356). 

The representations QG and So are specified, along with their dimensions, in table 1 
in a notation (Wybourne and Bowick 1977, King and AI-Qubanchi 1981) developed 
more recently. 

It is of interest to determine to what extent the result obtained for the spin plethysm 
QG @ A  depends upon the fact that C ~ G  is the adjoint representation of G. 

If $G is any orthogonal, unimodular representation of G of dimension M, then G 
may be embedded in SO(M) with the embedding defined by 

and the branching rule is then 

A, + Q ~ @ A +  = 2rk/21-1 SG. 

SO(M) 3 G [1l*$G* 
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Table 1. 

k(k+2) 
k(2k+1) 
k(2k + 1) 

14 
52 
78 
133 
248 

k(2k-1) 

{k, k-1 , .  . . , l }  2k(k+1)/2 
[A;k-1 ,  k - 2 , .  .. ,1 ,0]  2k2 
(k, k - 1 , .  . . , 1 )  2k2 
[k-1, k - 2 , . .  ., 1,0] 
(31) 26 
(A; 521) 224 
(11; 54321) 236 

263 

2k‘k-1) 

21zo 
(17,654321) 
(29,7654321) 

The branching rule for the spin representation A of SO(M) is given by 

SO(M) 3 G A +  $GOA, 

and the spin plethysm $0 @A may be evaluated as before by considering the images of 
the weights of A under the mappings of the weights of [ 13 to those of $0. The analogue 
of (7) is then 

Here M:G is the multiplicity of the weight m in the representation $a so that is half 
the sum of the positive weights of $0. This weight is the highest weight of an irreducible 
representation 8% of G. Making use of (6) it follows that 

3 2[k*G/21S:G 

where k*G = MgG is the multiplicity of the null weight in $0. 

For arbitrary 
$0 = (p& for which 

this branching rule is not complete, but there are special cases, 

(pz @ A  = 2rkw/’1,z. (14) 
For convenience, in these cases, k*G and 8% have been denoted by k” and S”, 
respectively. Examples of such cases are provided by (PZ = [2], (1’) or [2] of SO(2k + l), 
Sp(2k) or 0(2k), respectively. The corresponding branching rules are 

SO(M) =) SO(2k + 1) (15a) 
SO(M) 3 Sp(2k) (15b) 

(15c) 

A+[2]@A=2[k”1[A; k, k - 1 , .  . . , 2 ,1 ]  

A,(~”@A=2[‘k-’’/’7(k - 1, k - 2  9 * * * , 190) 
SO(M) =) O(2k) 3 SO(2k) A+[”@A=2r‘k-’’/21 [k, k - 1 , .  . . , 2 ,1 ]  

([k,k-1, .. . , 2 ,  l]++[k,k-1,. . . , 2 ,  1]-). ~ 2Ctk-1)/21 

The validity of the first two re8ults is confirmed by a dimensionality check based on 
the identity (El-Samra and King 1979) 

dzk+i[A; AI=2kdzr(A), (16) 
together with the known results for &(k, k -1, . . . , 2 , 1 )  and &[A; k - 1, k -2, 
. . . , 1, 01 already given in table 1. 
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In order to deal with the third result (15c), it is convenient to introduce a truly 
remarkable series of SP-functions 

where the sum is taken over all partitions (7)  having Frobenius symbols of the form 

a a - 2  a - 4  . . * ) = ( a + l , a , .  . . , 2 , 1 ) .  
a a - 2  a - 4  . . .  (7 )  = ( 

The structure of the corresponding Young diagram makes it clear that {T/m}  = {~/l"'} 
for all m and hence that 

{T/W = { d Q I  and W L I =  { d p )  (19)  
where LM = PQ = 1 .  

The following 9'-function series identities (King et a1 1981) 

A = PMC B = LQD V = L Q  W = P M  (20) 

{dAl = {T/C) WBI= b / D )  (21)  

then imply that 

and 

{7/ v} = { T /  w} = IT } .  

The significance of this result is revealed by the relationship between orthogonal and 
symplectic group characters given by 

O(2k) c U(2k) =, Sp(2k) [A]+{A/C}+(A/BC)=(A/V). (23) 
Hence for the special representations labelled by T 

&[TI = d2k(T). (24) 

dZk[k, k - 1 , .  . . ,2,1]=dzk(k, k - 1 ,  . . . ,  2, 1)=2k2, 

Thus 

125) 

is given in table 2. 

As far as further possibilities are concerned, consideration of the defining represen- 

confirming the third result. Information concerning (p; and 
Just as in (12), if M is even, the branching rule for A* is that of A divided by 2. 

tations of G2 and F4 yields 

SO(7) -3, G2 
SO(26) 2 F4 

A + (1)@A = (1) + (0) 

A* + ( l )@A,  = (A; 2). 

Table 2. 

2 k l k + l )  

2k'k-1) [A; k, k - 1, . . . , 2 , 1 ]  Bk S 0 ( 2 k + 1 )  [2] k ( 2 k + 3 )  

Dk S O ( 2 k )  [ 2 ]  ( & + 1 ) ( 2 k - l )  [k,  k - 1 , .  , . , 2 , 1 ] + + [ k ,  k - 1 , .  . . , 2 , 1 ] -  2 k 2  
ck S p ( 2 k )  ( 1 2 )  ( k - l ) ( 2 k + l )  ( k - l , k - 2  ,... , L O )  
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The defining representations of E6 and E, are complex and symplectic, respectively, 
while that of Es is nothing other than the adjoint representation already discussed. 

Further simple results seem unlikely. For example, the embedding of Gz in SO(27) 
by means of the representation (2) is not maximal, 

SO(27) 3 SO(7) 3 Gz [11-,[21-,(2), 
and the spin plethysm takes a non-trivial form 

A+2[A; 321]+(2)OA 

= 2(61) +2(62) +2(50)+4(51)+2(52) +2(40)+4(41) 

+2(42)+2(30)+4(31)+2(20)+2(21). 

The results obtained here were stimulated by the remarkable work of Morris (1961) 
who derived the particular results appropriate to the cases G = O(N).  In addition, the 
result appropriate to G = Gz is contained in the tables of branching rules given by 
McKay and Patera (1981) which are not, however, extensive enough for the general 
results (11) and (14) to be manifest. 
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