Some noteworthy spin plethysms

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1982 J. Phys. A: Math. Gen. 151137
(http://iopscience.iop.org/0305-4470/15/4/017)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:11

Please note that terms and conditions apply.

Some noteworthy spin plethysms

R C King and B G Wybourne \dagger
Mathematics Department, The University, Southampton, SO9 5NH, UK

Received 25 September 1981

Abstract

The spin plethysms $\lambda_{G} \otimes \Delta$ that arise in the reduction of Δ under $\mathrm{SO}(N) \rightarrow G$ when $[1] \rightarrow \lambda_{G}$ are considered. It is shown that, for the simple Lie algebras of rank k, if $\lambda_{G}=\varphi_{G}$, the adjoint representation of G, then $\varphi_{G} \otimes \Delta=2^{[k / 2]} \delta_{G}$ where δ_{G} is the representation of G whose highest weight is half the sum of the positive roots. Certain results for other representations are described. A remarkable series of \mathscr{S}-functions is introduced leading to a new dimensional equality between certain representations of $\mathrm{O}(2 k)$ and $\mathrm{Sp}(2 k)$.

The adjoint representation φ_{G} of each simple Lie group G is orthogonal and unimodular (Malćev 1962). It follows that G may be embedded in $\mathrm{SO}(N)$ where N is the dimension of φ_{G}. This embedding, signified by

$$
\begin{equation*}
\mathrm{SO}(N)=G \quad[1] \rightarrow \varphi_{G} \tag{1}
\end{equation*}
$$

is such that the branching rule for any representation λ of $\mathrm{SO}(N)$ takes the form

$$
\begin{equation*}
\mathrm{SO}(N) \supset G \quad \lambda \rightarrow \varphi_{G} \otimes \lambda \tag{2}
\end{equation*}
$$

where $\varphi_{G} \otimes \lambda$ denotes a plethysm (Littlewood 1950) whose total dimension is equal to that of λ. In particular, the branching of the spin representation Δ of $\mathrm{SO}(N)$, of dimension $2^{[N / 2]}$, is given by

$$
\begin{equation*}
\mathrm{SO}(N) \supset G \quad \Delta \rightarrow \varphi_{G} \otimes \Delta . \tag{3}
\end{equation*}
$$

The evaluation of the spin plethysm $\varphi_{G} \otimes \Delta$ may be accomplished by considering the mapping from the weights of the representation [1] of $\mathrm{SO}(N)$ to the weights of the representation φ_{G} of G. These latter weights are simply the roots $\pm r(\alpha)$ of the corresponding Lie algebra g of dimension N, together with k null vectors 0 , where k is the rank of g. The number of positive roots $r(\alpha)$ of g is $(N-\dot{d}) / 2$.

The order-preserving map corresponding to (1) then takes the form

$$
m(i) \rightarrow\left\{\begin{array}{cl}
r(\alpha) & \text { for } i=\alpha=1,2, \ldots,(N-k) / 2 \tag{4}\\
0 & \text { for } i=(N-k) / 2+1,(N-k) / 2+2, \ldots,(N+k) / 2-1 \\
-r(\alpha) & \text { for } i=N-\alpha+1=(N+k) / 2,(N+k) / 2+1, \ldots, N-1, N,
\end{array}\right.
$$

where, in the [$N / 2$]-dimensional weight space of $\mathrm{SO}(N)$,

$$
m(i)= \begin{cases}e_{i} & \text { for } i=1,2, \ldots,[N / 2] \tag{5}\\ 0 & \text { for } i=[N / 2]+1 \text { if } N \text { is odd } \\ -e_{N-i+1} & \text { for } i=N-[N / 2]+1, \ldots, N-1, N\end{cases}
$$

with $e_{i}=(00 \ldots 1 \ldots 0)$ where the i th component is 1 and all others vanish.

[^0]The weights of the spin representations Δ of $\mathrm{SO}(N)$ are the $2^{[N / 2]}$ vectors

$$
\begin{equation*}
\boldsymbol{w}=\sum_{i=1}^{[N / 2]} \eta_{i} \boldsymbol{m}(i) \tag{6}
\end{equation*}
$$

with $\eta_{i}= \pm \frac{1}{2}$.
The mapping of the highest weight then takes the form

$$
\begin{equation*}
\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right) \rightarrow \frac{1}{2} \sum_{\alpha} \boldsymbol{r}(\alpha)=\boldsymbol{\delta} \tag{7}
\end{equation*}
$$

where δ is half the sum of the positive roots of g. This weight is the highest weight of an irreducible representation δ_{G} of G which is thus necessarily a constituent of the restriction to G of Δ.

More generally this weight vector δ is produced under the mapping (4) from the weights (6) of Δ in precisely $2^{[k / 2]}$ ways, since the last [$\left.k / 2\right]$ coefficients η_{i} may be changed from $+\frac{1}{2}$ to $-\frac{1}{2}$ without altering the image of \boldsymbol{w} under (4). It follows that

$$
\varphi_{G} \otimes \Delta \supset 2^{[k / 2]} \delta_{G} .
$$

The dimension of the irreducible representation λ_{G} is given by Weyl's character formula

$$
\begin{equation*}
d\left(\lambda_{G}\right)=\prod_{r(\alpha)>0} r(\alpha) \cdot(\lambda+\delta) / \prod_{r(\alpha)>0} r(\alpha) \cdot \delta \tag{8}
\end{equation*}
$$

where $\boldsymbol{\lambda}$ is the highest weight of λ_{G}. Hence

$$
\begin{equation*}
d\left(\delta_{G}\right)=2^{(N-k) / 2} \tag{9}
\end{equation*}
$$

However

$$
\begin{equation*}
d(\Delta)=2^{[N / 2]} \tag{10}
\end{equation*}
$$

Since $N \equiv k(\bmod 2)$ for each simple Lie algebra, a dimensional check is sufficient to confirm the following general result:

$$
\begin{equation*}
\mathrm{SO}(N) \supset G \quad[1] \rightarrow \varphi_{G} \quad \Delta \rightarrow \varphi_{G} \otimes \Delta=2^{[k / 2]} \delta_{G} \tag{11}
\end{equation*}
$$

Of course, if N is even, the spin representation Δ has two irreducible constituents and the branching rule is then

$$
\begin{equation*}
\Delta_{ \pm} \rightarrow \varphi_{G} \otimes \Delta_{ \pm}=2^{[k / 2]-1} \delta_{G} \tag{12}
\end{equation*}
$$

The representation δ_{G} of G, whose highest weight is half the sum of the positive roots, is specified in the Dynkin notation by attaching a 1 to each circle of the Dynkin diagram. This follows from the fact that δ is the sum of the highest weights of the k elementary representations of G (Dynkin 1957, p 356).

The representations φ_{G} and δ_{G} are specified, along with their dimensions, in table 1 in a notation (Wybourne and Bowick 1977, King and Al-Qubanchi 1981) developed more recently.

It is of interest to determine to what extent the result obtained for the spin plethysm $\varphi_{G} \otimes \Delta$ depends upon the fact that φ_{G} is the adjoint representation of G.

If ψ_{G} is any orthogonal, unimodular representation of G of dimension M, then G may be embedded in $\operatorname{SO}(M)$ with the embedding defined by

$$
\mathrm{SO}(M) \supset G \quad[1] \rightarrow \psi_{G} .
$$

Table 1.

g	\boldsymbol{G}	φ_{G}	$d\left(\varphi_{G}\right)=N$	δ_{G}	$d\left(\delta_{G}\right)$
A_{k}	$\mathrm{SU}(k+1)$	$\left\{21^{k-1}\right\}$	$k(k+2)$	$\{k, k-1, \ldots, 1\}$	$2^{k(k+1) / 2}$
$\mathrm{~B}_{k}$	$\mathrm{SO}(2 k+1)$	$\left[1^{2}\right]$	$k(2 k+1)$	$[\Delta ; k-1, k-2, \ldots, 1,0]$	$2^{2^{2}}$
C_{k}	$\mathrm{Sp}(2 k)$	$(2\rangle$	$k(2 k+1)$	$\langle k, k-1, \ldots, 1\rangle$	$2^{k^{2}}$
D_{k}	$\mathrm{SO}(2 k)$	$\left[1^{2}\right]$	$k(2 k-1)$	$[k-1, k-2, \ldots, 1,0]$	$2^{k(k-1)}$
G_{2}	G_{2}	(21)	14	(31)	2^{6}
$\mathrm{~F}_{4}$	$\mathrm{~F}_{4}$	$\left(1^{2}\right)$	52	$(\Delta ; 521)$	2^{24}
E_{6}	E_{6}	$(2 ; 0)$	78	$(11,54321)$	2^{36}
E_{7}	E_{7}	$\left(21^{6}\right)$	133	$(17,654321)$	2^{63}
E_{8}	$\mathrm{E}_{\mathbf{8}}$	$\left(\mathbf{1}^{2}\right)$	248	$(29,7654321)$	2^{120}

The branching rule for the spin representation Δ of $\mathrm{SO}(M)$ is given by

$$
\mathrm{SO}(M) \supset G \quad \Delta \rightarrow \psi_{G} \otimes \Delta
$$

and the spin plethysm $\psi_{G} \otimes \Delta$ may be evaluated as before by considering the images of the weights of Δ under the mappings of the weights of [1] to those of ψ_{G}. The analogue of (7) is then

$$
\begin{equation*}
\left(\frac{1}{2} \frac{1}{2} \ldots \frac{1}{2}\right) \rightarrow \frac{1}{2} \sum_{m>0} M_{m}^{\psi_{G} m}=\delta^{\psi_{G}} \tag{13}
\end{equation*}
$$

Here $M_{m}^{\psi_{G}}$ is the multiplicity of the weight m in the representation ψ_{G}, so that $\delta^{\psi_{G}}$ is half the sum of the positive weights of ψ_{G}. This weight is the highest weight of an irreducible representation $\delta_{G}^{\psi_{G}}$ of G. Making use of (6) it follows that

$$
\psi_{G} \otimes \Delta \supset 2^{\left[k \psi_{G} / 2\right]} \delta_{G}^{\psi_{G}}
$$

where $k^{\psi_{G}}=M_{0}^{\psi_{G}}$ is the multiplicity of the null weight in ψ_{G}.
For arbitrary ψ_{G} this branching rule is not complete, but there are special cases, $\psi_{G}=\varphi_{G}^{w}$, for which

$$
\begin{equation*}
\varphi_{G}^{w} \otimes \Delta=2^{[k w / 2]} \delta_{G}^{w} \tag{14}
\end{equation*}
$$

For convenience, in these cases, $k^{\psi_{G}}$ and $\delta_{G}^{\psi_{g}}$ have been denoted by $k^{\mathbf{w}}$ and δ_{G}^{w}, respectively. Examples of such cases are provided by $\varphi_{G}^{w}=[2],\left\langle 1^{2}\right\rangle$ or [2] of $\mathrm{SO}(2 k+1)$, $\mathrm{Sp}(2 k)$ or $\mathrm{O}(2 k)$, respectively. The corresponding branching rules are

$$
\begin{align*}
& \mathrm{SO}(M) \supset \mathrm{SO}(2 k+1) \quad \Delta \rightarrow[2] \otimes \Delta=2^{[k / 2]}[\Delta ; k, k-1, \ldots, 2,1] \tag{15a}\\
& \mathrm{SO}(M) \supset \mathrm{Sp}(2 k) \quad \Delta \rightarrow\left\langle 1^{2}\right\rangle \otimes \Delta=2^{[(k-1) / 2]}\langle k-1, k-2, \ldots, 1,0\rangle \tag{15b}\\
& \mathrm{SO}(M) \supset \mathrm{O}(2 k) \supset \mathrm{SO}(2 k) \quad \Delta \rightarrow[2] \otimes \Delta=2^{[(k-1) / 2]}[k, k-1, \ldots, 2,1] \\
& \tag{15c}\\
& \quad \rightarrow 2^{[(k-1) / 2]}\left([k, k-1, \ldots, 2,1]_{+}+[k, k-1, \ldots, 2,1]_{-}\right) .
\end{align*}
$$

The validity of the first two results is confirmed by a dimensionality check based on the identity (El-Samra and King 1979)

$$
\begin{equation*}
d_{2 k+1}[\Delta ; \lambda]=2^{k} d_{2 k}\langle\lambda\rangle \tag{16}
\end{equation*}
$$

together with the known results for $d_{2 k}\langle k, k-1, \ldots, 2,1\rangle$ and $d_{2 k}[\Delta ; k-1, k-2$, ..., 1, 0] already given in table 1 .

In order to deal with the third result ($15 c$), it is convenient to introduce a truly remarkable series of $\mathscr{\mathscr { S }}$-functions

$$
\begin{equation*}
T=\sum_{\tau}\{\tau\} \tag{17}
\end{equation*}
$$

where the sum is taken over all partitions (τ) having Frobenius symbols of the form

$$
(\tau)=\left(\begin{array}{llll}
a & a-2 & a-4 & \ldots \tag{18}\\
a & a-2 & a-4 & \ldots
\end{array}\right)=(a+1, a, \ldots, 2,1)
$$

The structure of the corresponding Young diagram makes it clear that $\{\tau / m\}=\left\{\tau / 1^{m}\right\}$ for all m and hence that

$$
\begin{equation*}
\{\tau / M\}=\{\tau / Q\} \quad \text { and } \quad\{\tau / L\}=\{\tau / P\} \tag{19}
\end{equation*}
$$

where $L M=P Q=1$.
The following \mathscr{S}-function series identities (King et al 1981)

$$
\begin{equation*}
A=P M C \quad B=L Q D \quad V=L Q \quad W=P M \tag{20}
\end{equation*}
$$

then imply that

$$
\begin{equation*}
\{\tau / A\}=\{\tau / C\} \quad\{\tau / B\}=\{\tau / D\} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\{\tau / V\}=\{\tau / W\}=\{\tau\} . \tag{22}
\end{equation*}
$$

The significance of this result is revealed by the relationship between orthogonal and symplectic group characters given by
$\mathrm{O}(2 k) \subset \mathrm{U}(2 k) \supset \mathrm{Sp}(2 k) \quad[\lambda] \rightarrow\{\lambda / C\} \rightarrow\langle\lambda / B C\rangle=\langle\lambda / V\rangle$.
Hence for the special representations labelled by τ

$$
\begin{equation*}
d_{2 k}[\tau]=d_{2 k}\langle\tau\rangle \tag{24}
\end{equation*}
$$

Thus

$$
\begin{equation*}
d_{2 k}[k, k-1, \ldots, 2,1]=d_{2 k}\langle k, k-1, \ldots, 2,1\rangle=2^{k^{2}} \tag{25}
\end{equation*}
$$

confirming the third result. Information concerning $\varphi_{G}^{\mathbf{w}}$ and $\delta_{G}^{\mathbf{w}}$ is given in table 2. Just as in (12), if M is even, the branching rule for $\Delta_{ \pm}$is that of Δ divided by 2.

As far as further possibilities are concerned, consideration of the defining representations of G_{2} and F_{4} yields

$$
\begin{array}{ll}
\mathrm{SO}(7) \supset \mathrm{G}_{2} & \Delta \rightarrow(1) \otimes \Delta=(1)+(0) \\
\mathrm{SO}(26) \supset \mathrm{F}_{4} & \Delta_{ \pm} \rightarrow(1) \otimes \Delta_{ \pm}=(\Delta ; 2) .
\end{array}
$$

Table 2.

g	G	φ_{G}^{w}	$d\left(\varphi_{G}^{\mathrm{w}}\right)=M$	δ_{G}^{w}	$d\left(\delta_{G}^{\mathrm{w}}\right)$
B_{k}	$\mathrm{SO}(2 k+1)$	$[2]$	$k(2 k+3)$	$[\Delta ; k, k-1, \ldots, 2,1]$	$2^{k(k+1)}$
C_{k}	$\mathrm{Sp}(2 k)$	$\left\langle 1^{2}\right\rangle$	$(k-1)(2 k+1)$	$\langle k-1, k-2, \ldots, 1,0\rangle$	$2^{k(k-1)}$
D_{k}	$\mathrm{SO}(2 k)$	$[2]$	$(k+1)(2 k-1)$	$[k, k-1, \ldots, 2,1]_{+}+[k, k-1, \ldots, 2,1]$	$2^{k^{2}}$

The defining representations of E_{6} and E_{7} are complex and symplectic, respectively, while that of E_{8} is nothing other than the adjoint representation already discussed.

Further simple results seem unlikely. For example, the embedding of G_{2} in $\mathrm{SO}(27)$ by means of the representation (2) is not maximal,

$$
S O(27) \sqsupset S O(7) \supset G_{2} \quad[1] \rightarrow[2] \rightarrow(2),
$$

and the spin plethysm takes a non-trivial form

$$
\begin{aligned}
\Delta \rightarrow 2[\Delta ; 321] & \rightarrow(2) \otimes \Delta \\
= & 2(61)+2(62)+2(50)+4(51)+2(52)+2(40)+4(41) \\
& +2(42)+2(30)+4(31)+2(20)+2(21) .
\end{aligned}
$$

The results obtained here were stimulated by the remarkable work of Morris (1961) who derived the particular results appropriate to the cases $G=O(N)$. In addition, the result appropriate to $G=G_{2}$ is contained in the tables of branching rules given by McKay and Patera (1981) which are not, however, extensive enough for the general results (11) and (14) to be manifest.

Acknowledgment

One of us (BGW) is grateful to the University of Canterbury for the award of an Erskine Fellowship which made this collaboration possible.

References

Dynkin E B 1957 Am. Math. Soc. Transl. Ser. 26245
El-Samra N and King R C 1979 J. Phys. A: Math. Gen. 122316
King R C and Al-Qubanchi A H A 1981 J. Phys. A: Math. Gen. 1415
King R C, Luan Dehuai and Wybourne B G 1981 J. Phys. A: Math. Gen. 142509
Littlewood D E 1950 The Theory of Group Characters 2nd edn (Oxford: Clarendon)
Malćev A I 1962 Am. Math. Soc. Transl. Ser. 19172
McKay W G and Patera J 1981 Tables of dimension, indices, and branching rules for representations of simple Lie algebras (New York: Marcel Dekker)
Morris A O 1961 Ot. J. Math. (Oxford) (2) 1269
Wybourne B G and Bowick M J 1977 Austr. J. Phys. 30259

[^0]: \dagger Permanent address: Physics Department, University of Canterbury, Christchurch, New Zealand.

